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Abstract

The explicit stability constraint of the discontinn-

ous Galerkin method applied to the diffusion operator
decreases dramatically as the order of the method is

increased. Block Jacobi and block Gauss-Seidel pre-

conditioner operators are examined for their effective-
ness at accelerating convergence. A Fourier analysis

for methods of order 2 through 6 reveals that both

preeonditioner operators bound the eigenwdues of the

discrete spatial operator. Additionally, in one din|en-

sion, the eigenvalues are gronped into two or three

regions that are invariant with order of the method.

Local relaxation methods are constructed that rapidly

damp high frequencies for arbitrarily large time step.

Introduction

The discontinuous Galerkin method allows coral)act

spatial discretizations of any order to be formulated

on arbitrary meshes. The compact discretizations are

well suited to explicit time-marching methods for un-
steady simulations, and are easily and efficiently im-

pIeniented to run in a parallel environ|ne||t, t When

applied to propagation and advectioi! equations, the

stability constraint decreases only ntoderately 2 as the
order of the method is increased. However, when ap-

plied to the diffusion operator, the explicit stability

limit decreases dramatically as the order of the method

is increased, a and some degree of implicitness is nec-

essary'.

hnplicit time marching methods ranging from back-

ward Euler to a high-order implicit IRunge-Kutta coukl

be employed, depending on the level of temporal accu-

racy required. Regardless of the approach, a globally

implicit solution is required. The direct approach, a
direct solver, destroys the compactness inherent t.o the

discontinuous Galerkin method along with the associ-

ated advantages. Thus we are motivated to focus on
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iterative methods that are local to the element and

preserve the compact character of the. discontinuous

Galerkin spatial discretization. One obvious choice is
a block Jacobi relaxation scheme in which some or all

of the local contributions to the spatial operator are

treated implicitly.

This paper presents the Fonrier analysis of block Ja-
cobi and block Gauss-Seidel preconditioning operators

for the discontinuous Galerkin method applied to the

diffusion operator. Data froxn the analysis is used in

the development of optimal relaxation methods that

rapidly damp the high frequencies, and are well suited
for use with multi-grid r techniques. Numerical tests

are presented that veri_" the analysis,

The first, section describes the discontinuous

Galerkin method as applied t,o diffusion, introduces

required notation and formulates the partict|lar im-
plicit problem that is the focus of this paper. The

second section presents a detailed Fourier analysis, in

one dimension, of the preconditioning operators and
the findings of that analysis. The third section for-

mulates several optinlal relaxation methods based on

data from the analysis, and demonstrates them in nu-

merical tests. The fourth section extends the analysis
to two dimensions and fornmlates optimal relaxation
methods that are demonstrated in nnmerical tests.

Methodology

In this sect.ion, we describe in general terms the ap-

plication of the discontinuous Galerkin method to a
model diffusion eqt|ation of the form

c%i
0-7- - V- [_,V,,] = 0. (t)

Although there are several ways in which the discontin-

uous Galerkin method may be applied to a diffusion
operator 3-5 this analysis will focus on an approach

that requires a first order equation. To this end, equa-

tion (1) is recast as a set. of first order equations:

0-7-v.¢ = 0

,f-/*Vu = 0.
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Spatial Discretization

The discontinuous Galerkin method is applied on a

discrete element fh obtained by partitioning the do-

main into arl)itrarily shaped elements. The solution

in each dement is approximated in terms of a set of

local basis functions {bl,i} as il _ tq =_ _{i} bt,iul, i

and _ _ = Ell} bl,iqt,i ill _l. The governing equa-
tions are projected onto each men]bet of the basis set.

to give a set of equations in each element that govern

the evolution of the set of unknown variables {ul,,}.

abt,, - V.(_ d_ = 0

fbt,i [_ - V'ut]da = 0. (3)

The gradient term is eliminated by integrating by parts

to obtain the weak form

+E ___o

/ [bt,i(_- V'bl,i'ut]dQ+ E ./bt,ih(ut, uk)c['s=o (4)

where h denotes a numerical flux, the subscript k de-

notes the index of a neighboring element, 0Qt,k denotes

the boundary between fit and Qk, and c_ is the out-

ward boundary normal Note that the variables {_}

are simply intermediate values that can be computed

directly and explicitly from the solution. It| the case of

advection and propagation, the numerical flux is usu-

ally an approximate Riemann flux. For diffnsion, the

flux is simply a weighted average of u or 0"such that

fi((_, Ck) : (1 - _t,_.)q; + *t,_,£-,

h(u_,uk) = @,k< + (1 - Ol,k)Uk,

and 0t,k = l - 0k,t. Evaluation of the integrals and

fluxes of equation (4) leads to a semi-discrete evolution

equation of the form

OU_
- A. Q, + _ [(1 - ,,._)B_. q, + o,._c_, q_]ot

{k}

q, = AU, + y_ [,t knout + (1 - o, k)C,Uk]. (.5)
{k}

where

Ut -_

ffl, 1

Ill, 2

III, 3 ,
Ql =

L'_

LOfh ,k "

a/ld

LOF6,k J

To facilitate tile analysis, it. is assumed that the do-

main has been uniformly partitioned such that the

matrices A, Bk and C_. are the same for all elements.

Further more, in this study we will examine only the

so called "mixed LR" scheme 3'5 in which 0t.k is either

zero or one on each boundary segment O_t,k, and @,k

is assigned in a regular and repeating pattern.

Temporal Discretization

In previous works dealing with propagation, -_,s ex-

plicit Runge-Kutta was used to advance the solution

in time. ttowever, the stability bound of such an

explicit, method is inversely proportional to the maxi-

nmm eigenvalue of the spatial operator. When discon-

tixmous Galerkm is applied to the diffusion operator,

the maximum eigenvalue grows in magnitude approx-

imately proportional t,o p4 and the explicit approach

becomes impractical for most problems. An implicit

time marching method would clearly remedy the prob-

lem; however, a direct, inversion of the resulting matrix

woukt destroy the compactness of the discontinuous

Galerkin. Thus in the present work, we consider im-

plicit evolution methods that are solved by local relax-

ation methods, and we are interested in the analysis

of the relaxation process.

Given a general evolution equation of the form

-- = _(,,)/-)l

where R(u) denotes a spatial operator, all implicit

methods involve solving at] equation of the form

u"-u "-_ (H'ffu") (tt.-1 n-"At -- (Az)2 _-H ,u-. .... (6)
n(,,n-_), n(,,"-'-') .... ),

where tile superscript n may denote either the time

step (t = n dx t) or a step within the R||nge-l(utta

sequence, and ct and H depend o/l the specifics of the

method. In the present analysis, we are concern(,d

o,fly in the construction and stability of an iterat.ive

method for the solution _d _ it] equation (6). Thus, we

assume the discrete evolution equation (6) is stable in

tin]e, possesses the desired order properties, and that

old values of the solution u'- _, u'-2 ..... are known.

Within lhe scope of a Fourier analysis, the terms

involving the old vahles of the solution have no etfe('t
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on tile stability of a relaxation scheme. Thus it is suf-
ficient to examine a much simplified form of equation

(6) given by

(r)

where.X = a/kt/(/Xx) 2, and v =_ u'. Including a in

the A term eliminates all explicit dependence on the

specific evolution method, and the conclusions of the

following analysis apply to all time evolution meth-

ods that can be written in the form of equation (6).
Because this class of evolution lnethods includes first,-

order backward Euler, the following analysis also has

implications for steady-state solution met hods as well.

Fourier Analysis

We examine the eigenvalues of the Fourier transform

of equation (7), and the effects that two precondi-

tioners have on those eigenvalues. For the spatially

discrete discontinuous Galerkin method given in equa-

tion (5) but. specialized to one dimension, oquat.ion (7)
becomes

-- Ul

and Q, =: AU, + [Ct+ ½U,+l + B,_} Ul]. (8)

The subscript 1 +½ is a shorthand for the double sub-

script l,l:Sl, and 0t+½ is assigned as follows: 0t+½ = 1
01-½ = 0, Eliminating Q gives

+ (Ct+ ½Ul+l + Bt- ½Ut)]

+ C l_½[AUt_l+

+ (O,+lU, u,: o

+ {A[(A+Bt+½) (A+B_-½)

+ I}

= A(A)U___ +B(A)U_+C(A)U_+_. (9)

The Fourier transform is obtained by substituting
Ut = lT-lei°l where i - v/71, and 0 < 0 < rr, to give

_--wa(a, o)u
(10)

The precondilioned residual has the fl)rm t'->Pv(X, v).

The preconditioning operator for block .]acobi is ob-

tained from equation (9) by retaining only the terms

involving Ut.

PO = B(A)U_

= {A [(A + B,+½) (A+Bt-½)

+ - I}u,
f' j = B()q.

(it)

(123

For block Gauss-Seidel, preconditioner is defined by

dropping terms involving Ut+ 1.

P_ = B(A)Ut +.A(A)Ul-1

= {_[(A+BI+½)(A+B,_½)

+ C,_}C,+½]- I} U,

+ ACt_½(A+Bt-½) Ut-,

: (s(a> +.a(a)).

(13)

(14)

Analysis of Eigenvalues

The eigenvalues of _ and 15-1_. are compuled at.

50 values of 0 that are uniformly distributed between

0 and rr, and for A ranging from 10 -s to l0 s . If p

denotes the degree of the basis functions, then in one

dimension there are p + l eigenvalues for each value

of 0. Figure 1 shows the real component of all eigen-
values of _ for p equals 1-5 and with A = 1.0 (the

imaginary part is zero). The solid line is proportional

to p4 and closely matches the growth in the magni-

tude of the eigenvalues. Figures 2(a) and 2(b) show

the eigenvalues when block Jacobi and block (;at_ss-
Seidel preconditioning are used, respectively. Not only

are the eigenv;dues bounded for all p but they are

grouped into two or three regions. Both precondi-

tioners place one eigenvalue near zero, block .lacobi

has one eigenvalue near -2.0, and all of the remaining
eigenvalues are mapped exactly into -1.0. The varia-

tion in the eigenvalues within each region indicates the

degree to which the eigenvalue varies with 0. A clear

trend observed in both cases is that the eigenvalues

become more tightly grouped as p increases. (;auss-

Seidel is not. a symmetric operator, and consequently,

the imaginary component of its eigenvalnes is not zero.

However, the imaginary component is small relative to

the real component, so all following results will exam-

ine either the real component or the absolute value of

the eigenvalues (denoted as the absolute eigenvahm).
The above results are for A = 1, but similar trends

are observed for large and small A. Figures 3(a) and

3(b) show the eigenvalues for block Jacobi precondi-

tioning with A = 100and 0.01, respectively. With

A = 100 the eigenvalue pattern is nearly identical to
that of A = 1. With A = 0.01 the eigenvalues are more

tightly gronped with respect to 0, but the maximmn
and minimmn eigenvalue are not as close to 0.0 and
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-7.0, respectively. Similar trends were observed for
block Gauss-Seidel.

While the largest absolute eigeuvalue limits tile t ime

step of an explicit method, the smallest absolute e[gen-

value is the least damped and will limit the conver-

gence of an iterative method. Clearly both precondi-

tioners reduce the maximum absolute eigenvalue, but

this is of little value if the nfinimum absolute eigen-

value is equally reduced. Thus, another metric for a

preconditioner is the ratio of the maxinmm absolute

eigenvalue t.o the minimum a.bsolnte eigenvalue. Fig-

ures 4(a-c) show this ratio of absolute eigenvalues with
no preconditioning, with block .lacobi preconditioning,

and with block Gauss-Seidel preconditioning, respec-

tively. (Note: with no preconditioning the mininmm

absolute eigenvalue is always 1.0, so the ratio is equal

to the maximum absolnte eigenvalue, and the data is

just the negative of that shown in figure 1; however,
the data is redrawn on a log scale to facilitate compari-

son with the other two methods.) Block .lacobi reduces

the ratio by about an order of magnitude (at p = 5).

Block Gauss-Seidel further reduces the ratio by about

half an order (again at. p = 5). So both precondition-

ers provide considerable improvement in convergence,

but not the three orders of magnitude thal. one might

infer simply by looking at, the reduction of maximunl

eigenvalues.

Optimal Relaxation Schemes

The tight grouping of eigenvalues means entire

groups of the error modes can be rapidly damped,

sometimes completely damped, by the following simple

update method

U k+l = U k + _P-I_(A, Uk). (15)

The stability of this relaxation step is given by

G(w,o(O)) = I1 + we'(0)] where or(0) is any eigen-
value of the operator P-tT_. By choosing w = 1,

all the error modes with an eigenvalue of -1.0 are

completely damped. Similarly choosizlg ,,' = 0.5 will

rapidly damp the error mode with an eigenvalue near

-2.0. This leaves a single error mode associated with

the eigenvalue near zero, which is not readily damped
by any choice of w that. is not unstable for the other
error modes. The block Gauss-Seidel method can be

overrelaxed with _0 approaching 2 for large p, but. this

provides only a slight improvement in the damping
rate of the slow error mode.

However, if one considers the combined effect of a

sequence of relaxation steps

U _+1 =U k+wkp-I"R(),,Uk), k= 1...h (16)

each with a different w', then it is possible to choose

a sequence of wk that will rapidly damp all eigen-

modes. In the following sections, we present several

criteria for selecting an optimal sequence ofw for block

Gauss-Seidel and block ,lacobi for a fixed ,_. We then

construct a curve fit that accounts for the dependence

of the wk sequence on /_.

Block Gauss-Seldel

For block Gauss-Seidel, we consider a two step se-

quence whose stability is given by,

G_,(_'._,, or(O)) = G(1.0, o'(0))G(w2, o'(0)),

and we choose w_ to obtain an optimal damping rate.

By choosing ,zl = 1.0, the first step completely damps

all error modes with an eigenvalue of -1.0 and the
analysis can focus the single remaining error mode

whose eigenvalue is near 0.0. This slowly decaying

error mode, denoted a.s oh(0), is dominated by its real

component which varies monotonically with 0. This

behavior is typical for all p and )_ examined: p < 5
and 10 -s < .X<: l0 s .

In the following we examine two criteria for choosing

_2. The first, at:,proach minimizes Gg., across the entire

spectrum of 0 by requiring

Figure 5 shows Gg, for 0"1(0) (solid) and O'l(rC)

(dashed) as a function of w2 for p = 3, and for
A = 0.01.0. l,l.0 and 10.0. The symbols show

G_._(_2, rrl(0)) for a uniform sampling of 0 which gives

an indication of the variation of Gu., with 0 at. a fixed

w_. The symbols also verify that either (;v.,(,J,, _rl(0))

or Ge.,(w=,,crl(_r)) bounds Gg.,(w:,O) above when
is not small, and their intersection defines an opti-

mal _2 over all 0. For extremely small A, neither

G_., (w:,, crl (0)) or Gg., (w_, _rl (rr)) bounds (;,.j, ; however
equation (17) is still a suitable criterion for minimiz-

ing (;g, over all 0. Although the the damping rate is
stable for all A. the damping rate rises quickly with A,

and is unacceptablely high at A = 10.0. Also, when

A is large, (;y_,(w2,cq(rr)) grows rapidly with w,, and
quickly becomes unstable. The sensitivity to w_ is an

issue because lhe analysis can only be performed for

the idealized case of a uniform grid. In a realistic case

in which )_ varies due to non-nniformity in the mesh,

the actual optimal value of w2 may be different from
that predicted by the analysis, and the predicted op-

timal value may result in an unstal)le method.

A second and more robust approach is to minimize

(';u., in the high freqnency portion of the spectrum (0 >
rr/2) t,o obtain a relaxation scheme that is well suited

as a multigrid r smoother. To this end, we require that

(;9s(_2, o-1(¢r/2)) m Ggs(a_2, O-l(rr)). (18)

Figure 6(a) shows the w2 obtained by solving equation
(18) for a range of .X. Also shown is the curve defined

by

_,,, + l + (_m - 1) t.anh((_ * Iog_o(A ) + b)
_f _- 2

(1.¢))
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which provides an accurate fit of"22 for all A. Tile coef-

ficients a and b are obtained from a least, square fit over

the linear subrange seen in figure 6(b) and w,, is tile

nlaximum value of w2, taken here to be the value of"22

when A = 10s. From figure 7 which shows the depen-

dence of Gg., on w2 at. A = 10_ (similar to figure 5), we
can see that large variations in _,, can occur before the

method becomes unstable, and that small variations

do not significantly degrade the damping rate. Hence,

this criterion produces relaxation methods lha.t are ro-

bust. with regard to any' discrepancies that might occur
between the predicted opt.imal w2 and actual values.

Figures 8(a) and 8(b) show the behavior of _ (%f)
as a function of 0 and A, respectively. The maximum

value over the high frequency spectrum generally, oc-

curs at 0 = rr/2, and rises to _ 0.53 for large A. So

one would expect this relaxation method to be an ex-

cellent smoother for a multigrid method. It should

be noted that, because the first, relaxation step com-

pletely damps all error modes of this idealized linear

problem except for the 0"l(0) mode, it. is possible to

perform a single relaxation step with "2 = 1.0 followed

by any number of relaxation steps with "2 = w I . In this
case the asymptotic convergence rate would reduc, e to

(0.53) 2 = 0.28. In the above discussion, p = 3 has

been used to illustrate the procedure. The same anal-

ysis has been applied to all p _< 5 and the results are
summarized in Table 1. We find that the asymptotic

convergence rate is essentially constant as p increases.

Block Jacobi

For block Jacobi, we consider a sequence of three

relaxation steps in which _1 = 0.5, w2 = 1.0 and

"2a is chosen t,o provide optinlal damping of the high

frequency portion of the spectrunL 0 > 7r/2. The sta-

bility of such a method is given by

C;bo(_'a,_(0)) = c;(0.5, _( o) )(;( l.o, ,_(o) )( ;("2a, ,_(o) )
(20)

where or(0) is any eigenvalue of Ih_17_. Also let, oh (0)
and rr2(0) denote the maxinmm and minimum eigen-
values, respectively. Because the the ininimum eigen-

value c_2(0) is near but not exactly -2.0, tim associated

error mode is not. completely damped by the relax-

at.ion step with _'t = 0.5 and this eigenmode must

be considered when determining an optimal wa. In

particular, we choose wa by exalnining the intersec-

tions of the fimctious Goj("2a,0"t(rr)), Go("2a,m2(rr)),

Gbj("23,crt(Tr/2)) and Gbj("23,o'2(Tr/2)). AS shown in

figure 9 for p = 3 and A = 1.0, the optimal value
of "2a is associated with the maxinnml inlersection of

these curves. For the case shown in figure 9, "23 _ 6.7.
This process is repeated for A ranging from 10 -s t,o

10s and fitted by equation (19) as done previously for

block Gauss-Seidel. Figures 10(a) and 10(b) show the
behavior of

(;,,, (,_3, 0) - (max ((;bj(_._. c_j(0)), (;b.j (<,, _r2(O)))) 1/a

with respect, to changes in 0 and "2:_, respectively. The

damping rate for the high-frequency portion of the
spectrum does not increase above _ 0.76 as A be-

conies large. Also, the damping rate increases slowly

as a,'a varies from the optimal value indicating that

the method is robust in this respect.. This analysis has

been performed for all p < ,5 and results are summa-

rized in Table 2. As seen previously', the asymptotic

convergence rate is nearly constant with respect to p.

Nmnerieal Examples

In this section we provide a few numerical exam-

pies that show that. the performance predicted by" the

analysis are realistic and achievable. Details of the

numerical implementations are not provided here but

are throughly described m the references 3 and 7. The

block Jacobi preconditioned discontinuous Galerkin

method is applied to the one dimensional heat equa-

tion with periodic boundary conditions

Ou/St = V2u
u(0,.r) = sin(rrx) - I < x < l

in which the solution is approximated by polynomi-

als of degree p = 5. Tests are performed in which

the solution is evolved in time using either backward

Euler or third order implicit 1Ruuge-Kutta and with

At�lAx) e = 10. However, here we are interested only

the convergence of the temporal residual at. each time

step, or each [{unge-l*(utta stage, which is similar for

both evolution methods. Figure 11 shows the conver-

gence histories of a typical stage obtained by block

Jacobi relaxation with constant "2 = 1.0 and opti-

mal with the three-stage "2 sequence. Also shown is

the convergence of block Jacobi relaxation with opti-

mal three stage..2 sequence combined with a two-level

mult.igrid method. The multigrid method is a st.an-

darcl V-cycle with 6 relaxation steps on the line grid
between coarse grid cycles. The coarse grid solution

is converged t.o machine zero by block Jacobi relax-

ation to sinmlate the effect, of multiple grid levels.

The case using the optimal a: sequence without multi-

grid shows some improvement in the damping rate
over that of constant w. The number of relaxation

steps required to drive the residual to 10 -I-" drops

from 97(}6 to 1731; however this improvenwnt is not

sufficient to make this approach practical. With nmlti-

grid, the conw'rgence improves dramatically and only

276 relaxation steps are required to drive the resid-

ual to 10 -le. This corresponds to a convergence rate

of 10 -12/'-'r6 = 0.905, and represents a 25 fold reduc-

tion in work when compared t.o a sixth-order explicit

t{unge-Nutta method which has an explicit stability

constraint a of _l/A a,2 = 0.0015.

Extension to Two Dinltenslons

The following sections describe the results of the two
dimensional analysis, construction of opt.i,ua[ relax-
ation schemes for block aacobi and numerical results.
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Two Dimensional Analysis

In two dimensions, equation (7) has the form

•R.(A, Ui.j) = A(A)Ui-I,j + B(A)U,,.i + C(A)U,+I,./

+ 7)(A)Ui,j+I + E(A)Uij_I. (21)

The Fourier transfornl is obtained by substituting

Ui,j -_ _Jfi(o_ri+ouJ) to give

_z(A, u],_) = A(_)_ -_°_ + t3(A) + c(:_)¢ i°_

+ 9(A)e i°y + £(A)e -i°y

- _(_,, 0_ 6)0 (22)

The preconditioning operator for block Ja,'obi is sim-

ply Pbj = B(A)U/ and 15bj = B(A).

Typical eigenvalues are shown in figures 12(a) -

12(c). There are 21 eigenvalues for the fifth-order

method (p = 4). Figures 12(a) and 12(t)) show the

range of each eigenvalue as the wave nnmbers vary

over the complete range 0 <_ 0_:,0 u < re. Figure 12(c)

shows a contour plot of the fifth eigenvaIue. The anal-

ysis predicts that both block Gauss-Seidel and block

Jacobi preconditioners bound the eigenvalues, as seen

in the one dimensional analysis. Several eigenvalues

are mapped into -1.0, however, the remaining eigen-

values are not tightly grouped but are distributed over

the range 0 to -1.0 for block Gauss-Seidel and 0 to
-2.0 for block Jacobi.

Optilnal Relaxation

The eigenvalues are not tightly grouped making it

necessary to design a relaxation scheme that optimally
damps a broad spectrum. We choose a sequence of

three relaxation steps, similar to the previous approach

for block Jacobi; however, all three relaxation fa('tors

are allowed to vary freely. The amplification is given

by

(;2d(a,'l,W2,W3, or) = (;(wl, o)G(w2, o')G(w3, t'r) (23)

The objective of the optimization, ilh|straled in figure

13, is to minimize (;2a for all a in the range -2.0 <

cr < or'. or* denotes the largest eigenvahte in the high-

frequency portion of the spectrum and it varies with
A and it). Note that we are not explicitly concerned

with the dependence of a on 0. This optimization is

accomplished by' equating

G2d(G') = (;'2d(Ga) = G2d(@b) = G'2d(--2.0) (24)

where o'_ and or6 denote c_ at the local extrelna of

G2a(cr) and are given by OG2a/Ocr = 0.0. Equation

(24) is quadratic, which allows c,_ and c% to be de-
terlnined analytically as flmctions of wl, we and _3-

Equation (24) can now be solved to determine wi, __'2

and _,'3. Table 3 gives or* and the optimal ,.o sequence

for a range of A and for p = 4. i.i,' 1 and _'e are nearly

constant except at extremely small A, and w3 is accu-

rately fitted by a tanh distribution to give

_a = 3.72 + 2.72 tauh ( 1.022 logl0(A ) + 1.469)

Figure 14 shows the asymptotic convergence rate pre-

dicted by the analysis which approaches 0.9a as A

becomes large.

Numerieal Examples

Figure 15 shows the convergence history from sev-
era.l numerical tests. The test case is the two-

dimensional heat equation with periodic boundary
conditions and with the same initial condition as used

in the one dimensional test described previously. All

results are for the fifth-order (p = 4) discontinuous

Galerkin method with block Jacobi preconditiouing
and with At/_a "_ = 10. As seen in one dimension, use

of the optimal _' sequence without nmltigrid provides

only a small improvement over the constant a: = 1.0
case. When relaxation with the optimal w sequence is

combined with multigrid, the solution converges at a
spectral radius of 0.89. This rate is faster than that

predicted by' the analysis and represents a 14 fold re-

duction in work a.s compared to an explicit method.

Concluding Remarks

Block Jacobi and block Gauss-Seidel relaxation

nlet.hods have been analyzed for the solution of the

discontinnous (;alerkin method applieJ to diffusion.

A Fonrier eigenvalue analysis indicates that both pre-

conditioners bound the eigenvahtes. In one dimen-

sion. the eigenvalues are grouped into well defined

regions, both preconditioners place one eigenvalue

near zero, block Jacobi has one eigenvalue near -2,

and all of the remaining eigenvalues are mapped ex-

actly into -1.0. In two dimension, several eigenvalues

are/napped into --1.0; however, the remaining eigen-
values are distributed within the bounding region. In

general, the eigenvalues become more tightly grouped

and the minimum eigenvalue moves closer to zero as p
increases. Block Jacobi reduces the ratio of the maxi-

mum eigenvalue to the mininmm eigenvalue by about

an order of magnitude; block Gauss-Seidel reduces the
ratio by an additional half an order. Optimal relax-

ation inethods that employ a sequence of under- and

over-relaxation are formulated that provided bounded

convergence rates of the high frequencies as the time

step increases towards infinity. Numerical examples

with block Jacobi and multigrid demonstrated conver-

gence rates near the predicted values. When the use of

large time steps is appropriate, or when steady state

solutions are desired, the methods described here of_

fer more than an order of magnitude reduction in the
work.
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Table 1 _,/ curve fit parameters and asymptotic

convergence rate for block Gauss-Seidel

p _,Mm a

1 2.32 1.1858 0.314

2 3.85 1.1486 0.623

3 6.15 1.1144 0.777

4 9.13 1.0878 0.!)19

5 12.79 1.0781 0.917

,/c;., )
for X = l0 s

0427

0.55l

().5:;_

0.549

0.557

Table 2 _,/ curve fit parameters and asymptotic

convergence rate for block Jacobi

p . t,
for A = l0 s

1 2.77 1.1919 0.218 0.684

2 5.26 l. 1379 0.451 0.740

3 8.76 1.1194 0.556 0.762

4 13.25 1.0699 0.495 0.773

5 18.75 1.0200 0.602 0.779

Table 3 a* and optimal _ for block Jacobi precon-

ditioning with p = 4

/_ ('7*

10 -2 -0.297

0.1 -0.0845

1.0 -0.0308

10.0 -0.0237

l0 s -0.0228

0.5302

0.5343

0.5353

0.5354

0.5355

_2 _:_

0.87057 2.4309

0.95946 4.6989

0.98483 6.1458

0.98830 6.4078

0.98873 6.4413
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0
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Eigenvalues of preconditioned residual op=

erator with A : 1.0 and using a) block Jacobi

preconditioning and b) block Gauss-Seidel precon=

ditioning.
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ues with A = l0 and a) no preconditioning b) block

Jacobi preconditioning and c) block Gauss-Soidel

preconditioning.
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tion in one dimension: a) constant w = 1.0 without
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Fig. 12 Eigenvalues of block Gauss-Seidel and

block Jacobi in two dimensions: a) distribution

of all eigenmodes for block Gauss-Seidel precondi-

tioning, b) distribution of all eigenmodes for block

Jacobi preconditioning, c) Fourier distribution of

k = 5 eigenmode for block Gauss-Seidel.
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Fig. 15 Convergence of block Jacobi for heat equa-

tion in two dimensions: a) constant ,z = 1.0 without

multigrid, b) optirnal a,, sequence without multi-

grid, c) constant ,J = 1.0 with multigrid, d) optimal

,v sequence with multlgrid.
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